

Faculty of Engineering and Technology

Master of Software Engineering (SWEN)

Master Thesis

Empirical Study: Teaching Agile Software Development

By:

Alaa Hantoli

Supervised by:

Dr. Abdel Salam Sayyad

This Thesis was submitted in fulfillment of the requirements for

the Master’s Degree in Software

Engineering from the Faculty of Engineering and

Technology at Birzeit University, Palestine

June 25, 2020

Empirical Study: Teaching Agile Software Development

Author: Alaa Hantoli

This thesis was prepared under the supervision of Dr. Abdel Salam Sayyad and

has been approved by all members of the examination committee:

Dr. Abdel Salam Sayyad, Birzeit University

Dr. Yousef Hassouneh, Birzeit University

Dr. Sobhi Ahmed, Birzeit University

Date approved:

June 25, 2020

Declaration of Authorship

I, Alaa Hantoli, declare that this thesis titled, “Empirical Study: Teaching

Agile Software Development” and the work presented in it are my own.

I confirm that:

▪ This work was done wholly or mainly while in candidature for a

master degree at Birzeit University.

▪ Where any part of this thesis has previously been submitted for a

degree or any other qualification at this University or any other

institution, this has been clearly stated.

▪ Where I have consulted the published work of others, this is

always clearly attributed.

▪ Where I have quoted from the work of others, the source is always

given. With the exception of such quotations, this thesis is entirely

my own work.

▪ I have acknowledged all main sources of help.

▪ Where the thesis is based on work done by myself jointly with

others, I have made clear exactly what was done by others and

what I have contributed myself.

Signed: Alaa Hantoli

Date: June 25, 2020

iv

Abstract

Agile has been successfully adopted by many software companies and it is the

most popular methodology in industry nowadays. However, our universities give

more attention to teaching Waterfall model in related courses with a bit coverage

of Agile main characteristics. In this thesis, we work on the setup, execution, and

results of teaching a Software Engineering course to undergraduate students with

a specific focus on Agile practices, through official re-constructed lectures besides

open workshops with a senior engineer from industry to follow up with students

in parallel. In addition to improve the students’ technical, management and social

skills, and compared to other related works, this research investigates many

factors affected or have been affected by Agile and hold many significant

comparisons, also it gives additional focus on some agile practices –not covered

yet- as non-functional requirements. This research was designed to study the

impact of adopting the Agile Software Development Methodology in teaching, on

students understanding and practicing of software engineering. And then to

overcome the potential problems and highlight any raised side effects. The results

show the high satisfaction of the students through the experiment, also show a

sufficient evidence to conclude that there is a significant difference in the means

of improvements between the experimental and control groups in understanding

and applying software engineering and Agile methodology in specific. ِ

Keywords: Agile Software Development; Scrum; Software Engineering;

Undergraduate.

v

 الملخص

تم تبني منهجية)آجايل(لتطوير البرمجيات من قبل العديد من شركات البرمجيات، وهي المنهجية الأكثر

ً في الأيام الحالية. في مساقاتها المتعلقة بهندسة الأكبر ، فإن جامعاتنا تولي الاهتمامومع ذلكشيوعا

 البرمجي،منتج العلى التسلسل في عملية تطوير النموذج التقليدي الذي يعتمد بدورهلتدريس البرمجيات

 الرئيسية للـ)آجايل(. خصائصلل محدودةتغطية مقابل

 هندسة البرمجيات للطلاب مساقنتائج تدريس تحليل ، نعمل على إعداد وتنفيذ وفي هذه الأطروحة

، من خلال مشاريع برمجية ينفذها الطلاب اعتماداً على مبادئ وقيم وخطوات منهجية)آجايل(، الجامعيين

 .أداء الطلابختص من سوق العمل لمتابعة ورش العمل مع م وبالتوازي مع ،محاضرات الرسميةلبالإضافة ل

قارنةً بالأبحاث الأخرى ذات ، ومالاجتماعية للطلابالإدارية وارات التقنية وبالإضافة إلى تحسين المه

الصلة، يبحث هذا العمل في العديد من العوامل المؤثرة أو المتأثرة بمنهجية)آجايل(، ويجري عدد من

المقارنات. كما تم تصميم هذا البحث لدراسة تأثير اعتماد منهجية تطوير البرمجيات هذه في التدريس، على

مجيات. ثم للتغلب على المشاكل المحتملة وتسليط الضوء على فهم الطلاب وقدرتهم على تطبيق هندسة البر

 أي آثار جانبية بارزة.

تظهر النتائج الرضا العالي لدى الطلاب خلال التجربة ، كما تظهر أدلة كافية لاستنتاج أن هناك فرقاً

ت والـ مجيامعنوياً في متوسطات التحسن بين المجموعتين التجريبية والضابطة في فهم وتطبيق هندسة البر

)آجايل(على وجه الخصوص.

vi

vii

Table of Contents

Abstract iv

List of Tables .. x

List of Abbreviations .. xi

Chapter 1 Introduction .. 1

1.1 Introduction and Motivation .. 1

1.2 Research Objectives and Problem Statement 2

1.3 Overview of this thesis .. 3

Chapter 2 Background and Literature Review 4

2.1 Definition and Background ... 4

2.1.1 Agile .. 4

2.1.2 Scrum Methodology ... 6

2.2 Literature Review .. 10

2.2.1 Early Studies ... 13

2.2.2 Why Teaching Agile is Necessary 14

2.2.3 Other Studies... 16

2.2.4 Tools ... 17

2.2.5 Games ... 17

2.2.6 Agile Practices .. 19

2.2.7 Contribution .. 19

Chapter 3 Research Methodology ... 21

3.1 Scoping .. 21

3.1.1 Goal Definition ... 21

3.2 Planning ... 21

3.2.1 Context Selection .. 21

viii

3.2.2 Variables selection .. 22

3.2.3 Selection of subjects ... 22

3.2.4 Hypotheses formulation .. 22

3.2.5 Experiment design .. 24

3.2.6 Instrumentation ... 25

3.3 Operation ... 26

3.3.1 Preparation .. 26

3.3.2 Execution .. 30

3.3.3 Data Validation ... 34

Chapter 4 Results and Discussion .. 35

4.1 Evaluation of Learning Outcomes ... 35

4.2 Time to Market .. 37

4.3 Product Quality .. 40

4.4 Student Satisfaction ... 41

4.5 Other Results ... 43

4.6 Discussion of Results ... 44

Chapter 5 Conclusion and Future Work 47

5.1 Conclusion ... 47

5.2 Future Work ... 47

5.3 Recommendation ... 48

5.4 Threats to Validity ... 48

Appendices……………………………………………………….61

ix

List of Figures

Figure 2-1. Scrum Process Loop (Andreas Schroeder, 2012) 8

Figure 4-1. Projects Completeness Percentages 38

Figure 4-2. Bugs/KLOC rates .. 41

Figure 4-3. Top/Bottom five results of the fifteen statements, with

its percentage of satisfaction .. 42

x

List of Tables

Table 4-1. Summary of teams and projects 35

Table 4-2. Shapiro–Wilk test .. 36

Table 4-3. Group Statistics, T-Test .. 36

Table 4-4. Independent Samples Test, T-Test 37

Table 4-5. Projects Completeness .. 38

Table 4-6. Products Quality .. 40

Table 4-7. Summary of trial experiment .. 43

xi

List of Abbreviations

SWE Software Engineering

ASD Agile Software Development

XP eXtreme Programing

CC Computing Curricula

TDD Test-Driven Development

PTUK

SRS

Palestine Technical University

System Requirements Specification

CSE Computer Systems Engineering

ILO Intended Learning Outcomes

IDE Integrated Development Environment

1

Chapter 1 Introduction

The term Agile Software Development (ASD) has evolved opposite of plan-

centric development, its agility come from being specially designed to accelerate

software delivery to the client, and to be responsive and accept rapidly changing

requirements and integrate them to the product, increase productivity as well as

ensure software high quality and minimal development overhead [1].

1.1 Introduction and Motivation

Agile becomes mainstream and it is the public approach in software

development nowadays. More than half software corporations are developing using

an agile methodology such as XP and Scrum [6]. It is somehow considered the

standard industry practice within teams. It was evolved and applied by industry [5].

Moving to our universities where the software engineers and developers come

from, they primarily teach technical subjects such as programming, data structures

and databases, algorithms and modeling. As they are essentials, also the human side

can highly assist students in the transition into the software market and to act

effectively. It is critical in our universities to learn the manner of organizing the

process of development, treat with varied-skill teams, and how to output

outstanding software in spite of strict deadlines and a forty hours of work weekly

[2].

Although ASD is popular in industry for years, but universities only covered as

a part of undergraduate or graduate courses such as Software Engineering and

Software Project Management courses. Teaching classical methods like Waterfall

is the main topic in these courses, and sometimes it mentions ASD presence and its

common properties. Globally, few courses are devoted to ASD, as optional courses.

Teaching Agile methodologies usually covers one of them, such as Scrum or

XP. Because it is hard for a comprehensive learning of set of methodologies and

2

practices within the course period [5]. Our approach is to follow the Scrum strategy

in the course project. A general view of other Agile methods: Kanban, Lean, Crystal

and others; will be covered in the course outline.

Developing a project committing to a fully applied software development

methodology during the course; convinces students that software engineering is

useful for practical purposes, and students will believe in its effectiveness in real

world, helping them in their future career [14].

Universities are a risk-free academic environment allow a fully experiencing of

agile software development processes. This helps us to improve the students’

technical and social skills effectively, and build an Agile mindset. Also, helps to

investigate whatever factors we intend to study in this convenient educational

environment.

Also, there will be additional focus on some agile practices –not covered yet-

like non-functional requirements i.e. usability by developing a low and high fidelity

prototypes for evaluation.

1.2 Research Objectives and Problem Statement

 This research was designed to study the impact of adopting the Agile Software

Development Methodology in teaching, on students understanding and practicing

of software engineering.

In addition to improve the students’ skills (social, technical and management),

we intend to exploit the resources and the experiment itself as well, to compare the

quality (in means of time and bugs) between agile and traditional model, in order to

help student convince that is learning agile deserves their effort to learn.

Adopting agile in teaching require a shift in the pedagogical model, so we built

our plan of teaching on two main actions: give more attention to agile through the

course; and employ the project-based teaching and supportive workshops instead of

the traditional classes.

So our research objectives are the following:

3

- By applying the proposed pedagogical model, this research will firstly discuss

whether we can significantly improve the quality of teaching output represented

by the students understanding and practicing of agile methodology in SWE?

- Also hold a comparison between Waterfall Model and Agile Model against

specific criteria, including the bug rate and the percentage of implemented

features.

- And to find if students are satisfied of learning the SWE course through projects

with a more focus on agile and learning new tools?

1.3 Overview of this thesis

The report is organized after the introduction in the following chapters:

Chapter 2 gives a background about the Agile Software Development

Methodology, and specifies Scrum again, with an explanation why we choose to

adopt the Scrum in Teaching rather than other Agile Methods. The chapter also

discusses the pertinent literature and sources available in order to implement our

experiment, from where the other research have stopped.

Chapter 3 outlines the research methodology which was followed to collect and

analyse the data.

Chapter 4 analysis and discuss the results of the experiment.

Chapter 5 shows a small conclusion about the research and the findings on the

literature review, recommendation and future work.

4

Chapter 2 Background and Literature Review

In this chapter, we will review relevant background and term definitions, and

related research work in the area of teaching agile software development.

2.1 Definition and Background

2.1.1 Agile

Agile software development (ASD) has been formally introduced by a group of

software practitioners and consultants in 2001 in the “agile manifesto”, which

establishes four fundamental values for agile software development: individuals

and interactions over processes and tools, working software over comprehensive

documentation, customer collaboration over contract negotiation, and responding

to change over following a plan [1]. In addition to twelve principles behind the

Agile Manifesto, Agile people follow. These principles are the following:

- The highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

- Welcome changing requirements, even late in development. Agile processes

harness change for the customer's competitive advantage.

- Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.

- Business people and developers must work together daily throughout the

project.

- Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

- The most efficient and effective method of conveying information to and within

a development team is face-to-face conversation.

5

- Working software is the primary measure of progress.

- Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.

- Continuous attention to technical excellence and good design enhances agility.

- Simplicity--the art of maximizing the amount of work not done--is essential.

- The best architectures, requirements, and designs emerge from self-organizing

teams.

- At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly [11].

Agile classified as a lightweight methodology in where the method Agile is

incremental which releases a small software increments in short frequent iterations,

it is also iterative which allows re-planning and re-estimating as needed,

cooperative as it emphases the communication between the customer and

developers, straightforward because it has only a few rules and practices, that are

easy to follow and it is well documented, and adaptive such that let developers able

to deal with last moment changes. [12]

More than half of the resources for the traditional project are spent before any

development work even begins. Furthermore, requirements change before

development even starts [4]. Where Agile emphasize leading concepts, helps a

project team adapt fluently to the unpredictable and rapidly changing requirements,

and risk is minimized by focusing on short iterations of distinctly defined

deliverables.

The different Agile Software Development Methods are the following: extreme

programming [26], scrum [27][28], crystal family of methodologies [29], feature

driven development [30], the rational unified process [31], dynamic systems

development method [32], adaptive software development [33], open source

development [34], Agile modeling [35] and pragmatic programming [36]. They all

share the same philosophy, characteristics and practices. However, from the

implementation perspective, each method has its own combination of terminology

and practices.

6

We are looking between them for an easy method to comprehend, which makes

it ideal to introduce agility to undergraduate students. Also we focus on the

management aspects of projects. And which has fast iterations and active

collaboration within the team. So we chose Scrum for its ability to incorporate

various overarching practices promoted by other Agile models. And due to its

proven productivity, and its popularity in Palestine market. And some other details

discussed in the preparation section.

2.1.2 Scrum Methodology

The most important agile approaches are: Scrum, extreme, adaptive and

dynamic project management method. Of these, the most used is Scrum [4]. In

terms of agile, a Scrum is simply an agile, lightweight process for managing and

controlling software and product development in rapidly changing environments.

For example, Scrums are intentionally iterative, incremental processes that are

predicated on a team-based approach. Given that systems today are usually

development in fluid and rapidly changing environments, one of the major reasons

for using an iterative process is to help control the chaos that can result from

conflicting interests and needs within the project team. Additionally, iterative

processes are used to help enable improvement in communication, maximize

cooperation, as well as protect the team from disruptions and impediments. Overall

then, the goal is to deliver a more suitable product more quickly than with traditional

methods.

Over the years, a number of agile frameworks, such as Extreme Programming

and Scrum, have evolved and matured. The underlying philosophy of Scrum

recognizes that the customers often change their mind about the product they want

and that the development challenges are unpredictable by their nature [8].

Consequently, Scrum embraces the fact that the problem being solved cannot be

fully understood or described from the start. Instead, Scrum focuses on maximizing

the ability of the development team to quickly deliver in response to emerging

requirements.

7

The Scrum model is built on three major components: roles, process, and

artifacts [4] [12]. We will explain them here, because we will employ each detail of

scrum process in our students’ projects.

Scrum Roles

Roles are clearly defined and not boundaries-crossed. The Scrum Master looks

a like a team leader, he is responsible for various things, most notably are enacting

the Scrum values and practices (Daily Meeting, Planning Session, etc.), and

removing impediments. The Scrum team typically is a cross-functional team of five

to ten full-time members. The team is self-organizing, which has been interpreted

in diverse ways, but most often means that the leadership role within the team

changes depending on the needs of the current iteration (sprint). This change may

occur between sprints only. The product owner is typically a functional unit

manager who knows what needs to be constructed and the sequence of the progress

because he is the person who will contact with the customer.

In the execution section we will clarify how we define each role, and how we

assign them to team members.

Scrum Process

The Scrum process has five major activities: the kick-off, the sprint planning

meeting, the sprint, the daily Scrum, and the sprint review meeting. The product is

incrementally developed in time-framed sprints of two to four weeks, see figure 2-

1 (Andreas Schroeder, 2012) that explains the whole process [2].

8

Figure 2-1. Scrum Process Loop (Andreas Schroeder, 2012)

The sprint planning meeting is a meeting of the Scrum team, the Scrum master,

and the product owner at the beginning of each sprint. These meetings may require

a day. In the first part of this meeting, the group defines the product backlog, which

is basically a list of the project requirements. After this, the group defines its goal,

which is the formal outcome(s) from this individual sprint. In the second part of the

meeting, working on creating the sprint backlog. The kickoff meeting is structured

similarly to the sprint planning meeting but defines the high-level backlog and the

major project goals. The sprint starts after the sprint planning meeting completed.

Sprints differ from phases in a traditional waterfall method in that sprints are month-

long at most. Another characteristic, no outside influence should be allowed to

interfere with the work of the Scrum team during a sprint. This saves the project

requirements from changing during a sprint [2]. It is worth to say again Scrum still

accepted changes, but they are being planned in the next sprints without affecting

the current running one. Scrum master calls for daily Scrum meeting with Scrum

team, which lasts about 15 minutes as maximum, every team member briefly

answers three questions:

(1) What did you do since the last Scrum?

(2) What are you doing until the next Scrum?

(3) What is stopping you getting on with your work?

The daily Scrum is not a problem solving session nor individual assessment.

But to track the progress of the team as well as allow team members to make

9

commitments to each other and the Scrum master, who maintains the whole work

going ahead properly. The sprint review meeting is held at the end of each sprint,

to demonstrate the created functionality to the product owner. It is might be

different from the traditional meeting in being informal and not distractive.

Scrum Artifacts

Scrum artifacts comprise the product backlog, the sprint backlog, and burndown

charts. The product backlog is the project requirements expressed as a prioritized

list of backlog items. This list formed using project management software (such MS

Project) or as a spreadsheet. And it is managed and owned by the product owner.

The product backlog is a prime output of the kickoff or sprint planning meetings.

During the sprint planning meeting, the team performs an estimation of each

product backlog item. Two methods of review are typically used, expert review or

creating a work breakdown structure, using in both the story points. Then set up the

team’s velocity or amount of effort that can be handled during one sprint according

to the estimation. Velocity is the result of the division of Agile story points delivered

by the number of sprints.

Similarly, the sprint backlog is the subset of product backlog items for a

particular sprint. It is created only by the Scrum team members. Ideally the sprint

backlog is updated every day and contains no more than 300 tasks. The team may

need to break down a task if it is determined that it will take more than 16 hours.

Furthermore, the team may determine that items may need to be added or subtracted

from the sprint but this is the team’s decision, it is not something that is directed by

the product owner.

Unlike traditional project management, Scrum intentionally focuses on work

done through the use of burndown charts. Three types of burndown charts are

commonly used: the sprint burndown chart documenting the progress of the sprint,

the release burndown chart documenting the progress of the release, and the product

burndown chart documenting the overall project progress. A goal of a burndown

chart is to provide information in an easy to comprehend manner. As such, each

task is typically represented in terms of time (the x-axis of the display grid) and

duration (the y-axis). For example, a typical sprint burndown chart would depict the

10

total backlog hours remaining in the sprint per day as an estimated amount of time

left in the sprint. Ideally, the sprint burndown chart would “burn down” to no time

remaining by the end of the sprint; however as during the sprint, setbacks could

result in an increase in estimated time, not all burndown charts do burndown to zero.

The release burndown chart functions in a similar way but represents the remaining

time until the release will be done. Not surprisingly then, the product burndown

chart is used to indicate the overall project progress.

Some warnings should be clarified before going on a Scrum or other Agile

project. Periodic communication does not compensate documentation in all,

without sufficient control, a project could decay because documentation is not

maintained. Another point, in order to efficiently apply an agile approach, all

stakeholders must be committed to the process. Also focusing on removing needless

bureaucracy, makes it possible for all parties actually do productive work [4].

2.2 Literature Review

Our literature shows that research related to our topic of Agile teaching

published in many publication sources, either journals or conferences. Regarding

the years of publication, we did not find any studies related to our research topic

prior to 2001, they were published in Extreme Programming and Agile Processes

in Software Engineering Conference [14], and ASEE/IEEE Frontiers in Education

Conference [15]. They were immature enough, and most of them was concerned

XP. After few years some other studies published in Scrum and other methods.

About authors, we observed that for most of them from North America and Europe

(this does not mean a null participation or not significant from other locations),

whether possessed by one author, or multi authors from the same university, or from

different universities and colleges like in [8], or co-authors affiliated to different

countries within a single study.

However, in Arab World we cannot find except Nuha's paper executed in a

Jordanian university [9]. She has designed a course for undergraduate students, in

11

terms of Problem-Based Learning (PBL), the main goals of this work are to practice

one of the Agile software development methods, which is chosen to be Scrum, the

second purpose is to develop the entrepreneurial skills necessary for software

engineers, that “The Engineer of 2020” book mentioned, like: creativity, lifelong

learning, leadership, etc. Then she intended to examine the correlation between PBL

characteristics and Scrum practices.

In teaching Agile software development, the plurality of regarding work is

typically group-based projects, and teaches Scrum and/or XP [5]. The researcher

Nuha goes on another approach -even similar- attempting to get the best output from

binding with Agile teaching. The research have been reported in related literature,

differed in how effective it is in this context. This research is one of the latest we

found in this specific field. The author denoted she has resulted in a successful

experience of PBL as students show up. In general, the positive papers had evidence

that the Problem-Based-Learning very helpful in: Enriching the skills of

collaboration, communication and management; Improving criticality of learners;

Enhancing deep learning; Prompting professional identity and responsibility

development.

In few countries, the ASD laboratories and centers at universities have started

to appear, for teaching this methodology to students. For example: "The University

of Texas" in 2006 and "Bowling Green State University" in 2008. Furthermore,

teaching ASD to professionals is now well developed and going to be expanded.

The following are examples on those both.

An experiment of Teaching ASD through Lab Courses held in Germany [2],

they presented the setup, implementation, and results of two quite succeeded Scrum

labs carried out in 2010 and 2011. As all other related works, they state that the

adopting of agile methods in lab courses was succeeded. Previous to this German

research [2], two issues have set to be mostly preventive to the success of the labs -

but authors override in their experiment- : Firstly, academic instructors tend to

introduce advanced research topics into their labs. Secondly, too much time

consumed on the functionality of the software itself to be built rather than benefit

12

from it as a harmonious development approach. So authors, emphases the simplicity

of the product, means not algorithmically complex, although maintaining its

appealing, to not lose the student motivation, and to understand it instantly, in order

to focus on Agile as software development methodology from the kickoff.

Each of the two labs over the two years was engaged just six students, who had

given one project. The students found out how to achieve customer’s needs tied to

determined time, to overcome changes and to self-organize. Authors' main

outcomes are: Agile benefits students' social skills as well as technical skills, as

appear in vital collaboration and teamwork. Other key points, using a fun challenge

for student motivation, and teacher should prepare an appropriate development

environment- settings and plans- for a quick start. Also, Authors have found the

Scrum to be perfect for introducing software engineering processes.

They faced some problems: often, the analysis phase stays longer than

predicted, which reflects on the students and form their own vision about analysis

that only delaying the coding phase, then should be avoided, and that project

organization and infrastructure taught in the course are unable to assuring process

success. Their approach was to emphasize more on continuous process during the

lab, over the accomplishment the software product.

Although ASD has been applied in industry for many years, a typical case at

most universities is that it is only studied within undergraduate or graduate courses.

Traditional methodologies are often included in these courses, and in some cases

mentions ASD existence and no more general properties. Scarce courses are

devoted to ASD exclusively, and teach Scrum and\or XP of ASD several

approaches, and these are usually elective.

In [5], Authors display and argue their experiences through ten years (2010-

2017) of teaching a novel intensive ASD methods, the course was planned a week

long, as portion of a Masters of Software Engineering program. Where students are

software engineering professionals who already employed within industry and

probably have a degree in a computing topic, or have substantial industry

experience.

13

This work debate how students -experience Agile values and management

practices- to foster an Agile mindset. They had a positive feedback from the

participated students. The other important outcome is the course design and material

they had, which may be adopted where required in other studies performed on

master or bachelor degree.

The course design able to provide information to students, and to enable the

Agile mindset, this be realized through integration between different manners in

education, even if in formal educational settings. The outline describes the pre and

post-course assignment, case studies, lecture content, group exercises. They put

further emphasis on learning-by-doing with hands-on exercises and class discussion

– of some case studies; presented and run by the students themselves-. Each of the

exercises attempted to teach valuable aspects; for example, the estimation exercise,

it put the use of abstract story points into practice on non-software artifacts to help

understand that estimation is a team effort and not a formula that is uniformly

applied. A pre-study assignment is an individual assignment helps teacher prepare

appropriate plan, where the post-course to assess the students benefit [5].

In [1] authors pointed A new IEEE standard, P1648, that will provide a firm

basis as well as directions for future computing curricula (CC), that time they said

it was still under development, but when one refers now to IEEE-SA Standards

Board [16] there no thing related ASD.

2.2.1 Early Studies

One of the early literatures on teaching Agile is referenced as [14], this paper

reports on the practice of the ASD methodology for designing and implementing a

simple Java application for graduated students in an Information Technology

university department in Italy. The course is made of fifteen 3-hour weeks, the last

third of weeks was of practice activity, others of classes.

The paper proposes an agile approach for teaching Software Engineering based

on the strict collaboration of students and teachers in design activities and focusing

14

on the management of groups, time-table and meetings. The paper reports positive

student feedbacks and comments.

They gave care on teacher existence during meetings to monitor teams, and

encourage the groups to attend each other meetings, so teachers may observe some

bad practices they cannot see anywhere else, these faults are important to learn

about and avoid. On the other hand, teachers may suggest a valuable ideas or

behaviors.

They recommend two points, which all subsequent papers confirm. The first

one, practices should consist of just one assignment consists of all software

engineering aspects, where the past courses practices were based on a set of small

activities as a scalable and flexible way for managing each. Also from the vision of

the students, they usually had sensed software engineering just as a set of separated

and not linked activities that hardly fit together to effectively handle bigger

problems. Secondly, creating heterogeneous groups by the teacher, according to

student capabilities, background experiences and interests. Which leads to

homogeneity among groups.

As a result, which is also common result in all later studies, it is clearly observed

that both students and teachers are very motivated and interested in adopting ASD

in their courses.

The experiment was immature enough, they do not show a detailed plan of how

to integrate the agile practices and principles through the course and project, for

example they done the estimation without following any clear method or

instructions. They have used technical (design and coding) tools, but no

management tools. Furthermore, the evaluation was based on a written final exam

with exercises and theoretical questions instead of having formative evaluation over

the project period.

2.2.2 Why Teaching Agile is Necessary

In [7], based on authors' comprehensive teaching and research experience in the

subject of ASD, both in the industry and in the academia, throughout five years;

15

Their contribution is clarifying the reasons necessitate SWE programs to teach

ASD, as follows:

1. Agile was evolved and becoming utilized widespread in software

industry, its teaching in the academia is just a natural response.

2. Agile deals with human aspects since two of the agile manifesto ideas:

"Individuals and interactions over processes" and "Customer collaboration over

contract negotiation".

3. Agile naturally taught in a teamwork-oriented environment, there is no

need to introduce the topic of teamwork artificially.

4. Agile promotes diversity, with global software development, diversity

distinguishes the teams' formulation, since diversity is extracted from Agile

principles (e.g. customer collaboration) and is revealed by Agile practices (such as

informative workspace, pair programming and planning game).

5. Agile supports learning processes. Two techniques reflect this, small

releases and refactoring.

6. Agile develops mind habits. As reflection, abstraction skills and

program understanding. Such skills can be enhanced by activities such as stand-up

meetings, pair programming, and small releases.

7. Agile emphasizes management skills. While Agile is taught at university

level, students gain some software management skills. According to the fact that all

team members contribute the responsibility for the developed product, not the team

leader.

8. Agile consolidates ethical norms as well: Agile manifesto adheres "The

Software Engineering Code of Ethics and Professional Practice" formulated by an

ACM/IEEE-CS. For example, "software engineers shall act in a manner that is in

the best interests of their client and employer, consistent with the public interest."

match the "Customer collaboration over contract negotiation". They both give

priority to the customers' interest.

9. Agile highlights an overall image of software engineering, as it

concerning various fields, like cognition and management.

10. Agile environment provides a single all-inclusive teaching framework

for software engineering.

16

2.2.3 Other Studies

A case study accomplished in 2011 [1], describes authors’ eight years of

experience in teaching agile software methodologies to various groups of students

at different universities, in different cultural settings, and in a number of courses

and seminars. The authors provide recommendations on how to overcome potential

problems in teaching agile software development and make their adoption more

effective. Here are their recommendations in the light of problems they encountered

-and which our study fully cared about-:

 They discover that the problems of refactoring, testing, and design are a major

obstacle to fostering ASD, so it is helpful to get rid of these barriers in the

beginning of the course.

 It is sufficient for the iterations to be one to two weeks’ length, and this allows

for more iterations.

 Agile can be attractive, but it is not a silver bullet and not the best for all cases.

 There is must not be too much theoretical argumentation, students must involve

into practice to keep up the motivation. And to increase the adherence, every

decision should be taken with them.

 More monitoring gets students unsatisfied.

 They advise teams to be small. So in our case we can match this testament and

the group heterogeneity in [14] to conclude, if there is a team of inexperienced

students, teacher should not add some skilled members to it, instead teacher

should rearrange whole groups and distributed weak students among other

groups, because large groups are troublesome to manage, rearrangement also

helps to maintain the homogeneity between groups.

They have remarked some obstructions and were describing them unmanageable

and difficult to remove: Personal relations between students, lack of knowledge,

and the university setting can sometimes rise further inefficiency. As well the

pairing can be a crucial problem; personal incompatibility within pairs may

decelerate the team dramatically thus require special care and interference by the

teacher.

17

2.2.4 Tools

There are some deadlock in taking the advantage of available tools, it is a clear

weakness at mentioned experiments, for instance, authors in [2] did not provide any

platform for communication between teams, and in this case students will begin to

organize meetings to avoid the distributed team effects, depending on a group

solution i.e. yahoo groups.

They also have required students to use SVN which was not accepted by the

students. Teachers should carefully choose the tools for UML, version control and

other processes, tools must be correctly function and in the same time easy to use,

to intensify students’ efforts on Agile practices. And not been exhausted or losing

their time learning tools and solving its problems. For example, instead of SVN we

intend to choose Git as a tool for version control, where merging is easier and

straight forward.

Beside scrum practices, it is important to find an open and positive learning

platform for farthest knowledge transfer that improves the programming and design

skills of the students. Next are some helpful tools authors have not used, but they

have advised others to use: Coding Dojos, which a meeting where a group of coders

get together to complete a programming challenge within allocated time, and

audience can repeat it at home by themselves. [17] [18], i.e. using them with focus

on example-based learning, learning from each other.

2.2.5 Games

A rising tendency in teaching Scrum is the use of simulation games- like card

games, in order to facilitate the transition from the theory to practice. Although

some literatures as [25] consider the 2D games inadequate design to supply an

immersion experience and factual presentation of Scrum environment.

In [2], Lego4Scrum (ex. City) activity was conducted. Lego4Scrum project can

be finished in three hours, since all meetings and the sprint interval are shrink to

five minutes. This game [19] teaches agile thinking and explain the Scrum

framework with Lego. And cause of restricted time and powerful interaction,

students in each team cognize others and learn how they may self-organized during

18

the entire lab course, in addition to understand how to operate under pressure as a

team.

Different from card games, Virtual Scrum uses a virtual world to mimic a real

business environment treating 3D displays of the Scrum artifacts.

In [3], Authors devise a Virtual Scrum -a tool to enrich the learning experience

of Scrum- to get rid of limitations in time, large classes, and facilities within formal

education settings. The students had to develop a capstone project following Scrum

as a homework of two phases. In the first phase, the students used available tools

such as Jira, Excel and Microsoft Project to develop the user requirements, while

through the second stage they exercised Virtual Scrum to develop different set of

equivalent user requirements. Finally, authors gathered users' opinions by filling a

survey- free of neutral mid-points, reported that the tool is useful to enhance the

understanding of Scrum (67%), planning meetings (80%), tracking project progress

and retrospective meetings (60%).

On the other hand, there was a passive feedback on traceability of the user

stories with Virtual Scrum, students preferred the normal tools over the 3D

representation dealing with configuration management. Negative comments also

received on user interaction, authors had to improve it i.e. integration with social

networks.

Other games adopted in some other papers, some are based on those from the

website in [20], as an author of [8] have used. This author teaches students the core

principles of Scrum using a wide range of Agile games. Students learn about the

Scrum roles; sprints and their planning, reviews, and retrospectives; product

backlog, user stories and their prioritization. His experiment was a part of a shared

work between authors from four universities and colleges in Canada. They aimed

to come on the experiences and challenges of practicing Scrum and Agile methods

at a set of computer science programs. Another author gave his students a scrum-

like course in students' second year, in order to anticipate the third-year software

engineering course that includes an ASD project, he has adopted on a web tool

(CATME) [21], for formation and evaluations of the team members. Third author

teaches two courses, the first cover the basics of software engineering and the

requisite tools and techniques involved in developing group projects. Then they

19

have a second course where students apply the Scrum methodology that they have

learned on a real project. The last author does not follow either Scrum or XP

definitely, they developed an agile hybrid process to teaching the software

engineering course.

Another game site is PlanningPoker, where students play to learn the user stories

point’s estimations in some works [2].

2.2.6 Agile Practices

In [10], a systematic literature review of papers on Agile requirements

engineering, written based on experience or empirical studies, and have been

produced between 2002 and 2013. Authors aim to address the adopted practices of

agile requirements engineering in different published empirical research. And how

is agile differentiate from traditional requirement engineering. Also to stand on

challenges of agile.

They identified 17 practices: Face-to-face communication, Customer

involvement, User stories, Iterative requirements, Requirements prioritization,

Change management, Cross-functional teams, Prototyping, Testing before coding,

Requirements modelling, Requirements management, Review meetings and

acceptance tests, Code refactoring, Shared conceptualizations, Pairing for

requirements analysis, Retrospectives and Continuous planning.

Their findings point there is a need for a more attention and extra empirical

results in the field.

2.2.7 Contribution

To our best knowledge this study is considered the first study evaluating the

effectiveness of adopting the Agile Software Development Methodology in

teaching in Palestine, and the second in the Arab world. This work has what sets it

apart from other research, it shows a complete adopting of agile in teaching the

SWE course for the undergraduate students, not just in lectures, or during a week

lab, or through a three-hour game; instead it goes along a full semester, then it

depends on lectures, workshops, trainings, discussions, some entertainments and

20

much practicing. The students had to find a real project to work on with a real

customer, which is much closer to their future work. Furthermore, we arranged with

a senior developer from the real world to help keep up with the projects, who helped

us assure that all scrum aspects are adhered correctly.

Another important point that differentiate our work from a lot of others, that we

have a big focus on agile values and practices, not just scrum process and artifacts.

We have almost a complete simulation of reality, while many other researchers

disregard the necessary tools needed for the experimental groups who will apply

agile in their projects, which are an important factor that helps the experiment

succeed as they lately concluded, in our case we pay a big attention to choose the

best tools by a defined criteria, which contributed a great help, this criteria based on

many factors, like the cost (free time and users given), simplicity, and matching the

agile needs, and as a whole we intend to find a compatible and interrelated tools to

use from the same screen.

21

Chapter 3 Research Methodology

In this research, we focus on undergraduate-level teaching, the experiment was

held over the second semester of year 2018/2019 at Palestine Technical University

(PTUK). It was executed through the SWE course which is a required for students

in their third year, in which other SE methodologies are taught along with ASD in

the course, and other Agile methods are introduced, not exclusively Scrum.

3.1 Scoping

3.1.1 Goal Definition

Our goal is to analyze the level of students’ understanding of SWE and Agile,

and analyze the final product of student projects, including the bug rate and the

percentage of implemented features, for the purpose of evaluating the impact of

adopting the Agile Software Development Methodology in teaching, in the context

of 3rd year SWE course students formed in teams of 4-5 members working on

complicated problems. The study is conducted as a blocked subject-object study,

since it involves many subjects and more than one requirements document.

3.2 Planning

3.2.1 Context Selection

The context of the experiment is a SWE course at the university, with

undergraduates 3rd year students, hence the experiment is run off-line, not a part of

an industrial development project. It runs on real problems of limited-features

requirement.

It is considered as general research case in the sense that it aims to compare two

software development methodologies in general, and from a research perspective.

It is important to state that the support for the two inspected methodologies is

comparable, and the subjects in both tracks have no prior experience with any.

22

3.2.2 Variables selection

The first independent variable is the software development methodology and it

has two levels: Agile and Waterfall. The dependent variables are quality and

completeness of the developed software.

The second independent variable is the Pedagogical model in teaching the SWE

course, particularly the Agile part of it. It has two levels: the traditional way and

our new model of including the agile project. The dependent variable is the level of

students in understanding and practicing Agile.

3.2.3 Selection of subjects

The subjects are chosen using opportunity sampling which is a non-probability

sampling, there were no other criteria to the sampling method except that people

were available and willing to participate. The subjects are students taking the SWE

course for that semester when we were doing the experiment. It is significant that

the students still have the freedom to participate or deny participation in the

experiment without any penalty. The size of the sample is: 8 groups with a total of

38 student.

3.2.4 Hypotheses formulation

 As expressed in the goal definition of the research we would like to compare

between the agile and waterfall models in SWE, to find its effectiveness in a

simulation of real world projects, so we can dependably support our approach of

replacing the traditional teaching of SWE course in universities in a manner which

give more attention and focus on agile, and then do the needed shift in the

pedagogical model of teaching itself, to be project based in the first place, and

design whole the course to achieve a better understanding of SWE and let students

be able to practice it before going to the market. Which is the main objective of this

research.

The comparison will be based upon two components: quality and completeness

of the product when using two different software development methodologies,

Agile and Waterfall.

23

The quality here is the functional quality defined as the degree to which the

correct software was produced, and can be evaluated by the bugs rate. Where

completeness measures the percentage of developed features from the whole

required features in the product backlog. And then completeness will indicate the

time-to-market.

a- So the first Factor is Software Development Methodology

If we let:

µC Waterfall and µC Agile be the number of features completed of the project

requirements applying Waterfall and Agile respectively, and

µF Waterfall and µF Agile be the number of faults logged applying Waterfall

and Agile respectively,

Note: Completeness indicates Time needed.

 Then, the hypotheses are formulated as follows:

Null hypothesis, H0: Agile needs the same time-to-market that waterfall needs.

H0 : µC Waterfall = µC Agile

Alternative hypothesis, H1: Agile optimizes the time-to-market comparing to

waterfall. H1 : µC Waterfall < µC Agile

Null hypothesis, H0: Agile methodology produces the same number of bugs as

waterfall methodology. H0 : µF Waterfall = µF Agile

Alternative hypothesis, H1: Agile methodology produces less number of bugs

than waterfall methodology. H1 : µF Waterfall > µF Agile

b- And the second Factor is Pedagogical model in teaching

24

The adopting of agile in teaching required a shift to a new model of teaching

itself, where the entire outline needs updates, the topics and the lectures style. We

want to make the student live a software engineering environment, where there is a

real project needs management and development, in a way that enables him to

understand the subject of software engineering and apply it.

In our research we will apply the new approach of teaching which is (Agile

Practicing model) on agile projects with the experimental groups, where the control

groups will assigned the same corresponding projects but still receive traditional

education that already applied in the university.

 Where R: represents the Rank (Level of students in understanding and

practicing Agile). The rest of hypotheses are formulated as follows:

Null hypothesis, H0: Students from the new approach of teaching have the same

understanding of software engineering and agile as the students from the

traditional education.

H0 : µR Old = µR Agile Practicing

Alternative hypothesis, H1: Students from the new approach of teaching have

better understanding of software engineering agile as the students from the

traditional education.

H1 : µR Old < µR Agile Practicing

Measures needed: Faults/KLOC, the number of faults divided by the number of

lines of code. Completeness, the number of features completed divided by the

number of features required. Students Understanding: a pre and post quiz, and a

questionnaire at the end of the semester.

3.2.5 Experiment design

When it comes to randomization, the decision of the subjects division on teams

will be randomly selected of the available students. And so the assignment to each

treatment (Agile or Waterfall methodology) is selected randomly. And if there is

25

any group out of the 3rd year class would engage in the experiment we do blocking

on prior experience, by a pre-test, attempting to guarantee that it does not influence

the result of the research, blocking also done for differences between problems they

worked on, in terms of complexity and context. Moreover the experiment uses a

balanced design, which means that we have the same number of subjects per

treatment in the design. (We have eight groups half of them apply Agile each at

different application. The other four groups apply the Waterfall in those

applications development, the applications types are Desktop or Web).

The experiment includes two factors of primary interest, the first factor is

(software development methodology) with two treatments (Agile and Waterfall),

with four tests with different four subjects for each treatment, each corresponding

pair of the two treatments work on symmetry object. Where subjects are the

different participated teams or groups, and the objects are the real

problems/applications. Whereas the symmetry here means that the products are of

the same context and the same level of complexity.

 It also includes a second factor (pedagogical model in teaching) with two

treatments (Old model and Agile Practicing model). Where subjects are the course

groups, and the object is the (SWE course / Agile part of SWE course).

3.2.6 Instrumentation

The instruments for performing and monitoring the experiment are of three

types, objects which are here the product and its requirements, the second

instruments are guidelines and principles for the two development methodologies.

And because it is important to guarantee a rightful comparison, as discussed before,

we concerned comparable support of available resources and training for the two

methods for the teams. Lastly, measurements instrumentation conducted via data

collection in manual and online forms and discussions with students and some read

from tools used.

26

3.3 Operation

3.3.1 Preparation

Here we select and inform participants, and prepare material such as forms and

tools. In the first class of the SWE course we present a short session to students to

describe the nature of the experiment and its aim, also how the results of the research

will be used and published. And explain the global spread of Agile usage, then how

they will benefit from this experience on their personal skill and in their future work

even in local companies or multi-country teams. It will be made clear to the

participants they are free to withdraw from the experiment, then we obtain their

consent and willingness to participate.

 All experiment instruments is prepared in advance, including the experiment

objects, guidelines for the experiment and measurement forms and tools.

Then we ensure that the infrastructure needed is in place. This includes having

a suitable room booked for addition lectures or discussion with university

agreement, and a lab for practical workshops and trainings booked a day before it

is needed, also a certain lab is used an hour daily to give an area for teams’ daily

scrum.

3.3.1.1 Which ASD method?

There is a revolutionary transmit from prescriptive approaches (waterfall, Lean,

Kanban) to empirical processes (Scrum). Prescriptive approaches rely on planning

and controlling the plan to success, Managers manage resources to do the work, and

developers do the work, Command and control utilizes the productivity in

predictive procedures. But Empirical processes regularly direct the results to the

maximum as possible, Manager’s work is to posture the big problems, and to help

who are solving the problems as possible as they can, Creativity and collaboration

are the stamp of this method.

We are looking between the Agile Software Development methods for an easy

method to comprehend, which makes it ideal to introduce agility to undergraduate

students. Also we focus on the management aspects of projects. And which has fast

iterations and active collaboration within the team. So we chose Scrum for its ability

27

to incorporate various overarching practices promoted by other Agile models. And

due to its proven productivity, and its popularity in Palestine market. And some

other details and comparisons discussed below.

 Lean processes are good for complex systems and considered the most cost-

effective. But it spends much time on fixing complexities than constructing new

software products. Unlike Lean, Kanban do not mind much in mitigating wastes,

but in utilizing the manufacturing process. Kanban is frequently used when an

organization can not readily adopt Scrum [22] [23]. Agile methodologies are a well-

known approach to flexibly overcome the requirements unexpected changes [12].

Despite of this, we are not exaggerated in praise of Agile. There is no method is a

“silver bullet” each has its strengths and weakness as well, savvy is to know where

to use each.

Teaching Agile methodologies oftentimes converges on a particular method,

such XP or Scrum. It is troublesome to get into variety of Agile methods and

practices in depth with fitting into the short-lived semester [5].

Our course is based on Scrum, where products are evolved incrementally in

sprints enclosed to a time frame, where the team works on the sprint backlog of a

requirements set and generates a running piece of the required software. It is

significant that through a sprint its backlog does not change; any changes or new

requirements or other not finished user stories are gathered and kept to separate

backlog scheduled into next sprints. So without reminding its spread in industry,

Scrum is the easy to comprehend, accessible and effective methodology, which

makes it ideal to introduce agility to undergraduate students [2].

Scrum and XP are the most applicable agile methods in many studies, and they

have common structures, roles, and values. There are however some fine

differences, for example where XP pays more attention engineering practices such

as pair programming and Test-Driven Development (TDD) [5]. Which does not

match our purpose of improving students’ projects management skills.

It is worthy to highlight some orientations that weaving two or more ASD

approaches together is acceptable and productive [6]. To facilitate doing this,

teacher should not distinct strictly between each approach practices. Also it is

helpful to merge different methods terminologies [1]. In [24] authors have practiced

28

a hybrid model, merging XP and Scrum in a single course. They argue that those

two methods work well when correlated. Simply because they address different

areas and supplements one the other i.e. Scrum focuses on management practices

whereas XP focuses foremost on engineering practices.

3.3.1.2 Tools

Several specific software development tools have been integrated in the new

pedagogical model of teaching, to be used for the experimental groups, who will

applying agile in their projects, as the teacher guides them. We searched for

appropriate tools needed in experiment implementation and tried them out, and

examined them carefully to specify the most suitable ones. Some of them mentioned

in related research. Others we have discovered online mainly to find a compatible

and interrelated tools for students to use from the same screen. And in second place

we focus on tools that students may understand faster and like more. A third factor

that we were not able to neglect is minimizing the cost, we chose tools that allow

the most possible time of free using and allow more free users to join. Lastly, we

search for tools match the agile needs, so for example, we chose “Trello” over “MS

Project” for management, because Trello designed especially for Scrum. Another

example on this factor, we chose Git over google shared documents for code

collaboration and management.

As an example, for Agile Project Management, there are many tools available

for developers to use, like: Active Collab, Agile for Scrum, Jira, MS Project, Trello

and others. From those all, we have chosen “Trello” according to the previous

factors, it is also used in many companies and has a pretty usable interface. More

about Trello is below.

Project Management Tool – Trello. A main idea in Scrum is the transparency,

where the team should know the progress, and what they try to accomplish. That is

also why we used Trello as a Scrum Board. This is a platform where team members

organize the backlog, and tasks of the current sprint and their progress. It is

compatible and powered up by many other applications in many directions; In

Analytics and Reporting we find in the list for example: TimeCamp and Burndown

29

for Trello. In Communication and Collaboration we find: Dropbox, Google Drive,

Hangouts, Slack, Twitter and Calendar. In Developer Tools: Bitbucket Cloud,

GitHub and Planning Poker. In Design: SmartDraw.

We mainly use from those with Trello: the Bitbucket for source code

management, and Trello itself for communication related to any card/task or general

conversation, and surely could insert any link from a file management repositories.

For source code management, collaborate on code, test and deploy. Students

use “Bitbucket” which is a Git code management. And can be interrelated to the

Trello screen.

For team work assessment. There are ClassDojo, Dapulse/Monday, Catme

and others, we use “Catme” for team formation and team member evaluations by

each other.

For online meetings with lecturer. We use “Webinar” which is a web-based

seminar used for off-class lectures or trainings.

For online communication between team members. There is an embedded

efficient platform in the “Trello” itself.

For filling questionnaires /forms and quizzes. It is executed on the University

Learning Management System “Moodle” and online forms.

 Course Outline. The course is designed to fulfil the Pyramid of Agile Competences

described in [6]. From top: Agile Values, Management Practices, and Engineering

Practices. Which the first two can be taught respectively in lectures and team project

but the engineering practices (like adhering the code of ethics) is hard to achieve

because teacher have to change individual attitudes.

 The course runs along a semester of 15 weeks; the project is implemented during six

2-weeks sprints. The course general outline in the appendix A, the lectures differ

between discussion lectures, simple gaming, and technical workshops.

The course outline was designed in the light of the plan of SWE course in the CSE

department in the university, and in light of previous research, those which prepared

plans for teaching agile, then we did some special modifications to fit the new

experiment. And ILOs as well, they also fulfill the five levels of Bloom's taxonomy of

educational objectives.

30

 By the end of the course, the student will be able to:

1- Define the software engineering and list some software development

methodologies.

2- Explain main concepts of SWE.

3- Characterize main methods for software development.

4- Sort waterfall model phases.

5- Differentiate between functional and non-functional requirements.

6- Construct low and high fidelity prototypes.

7- Comprehend and draw different UML diagrams.

8- Identify and explain Agile Manifesto of values and principles.

9- Choose the appropriate IDE to install for applications development.

10- Create a clean design for their projects and standardized code.

11- Organize their teams.

12- Collaborate with other team members and the customer.

13- Analyze the customer needs.

14- Apply ethics when dealing with others, or working their tasks.

15- Recognize and use the new tools efficiently.

16- Demonstrate good comprehension of scrum concepts.

17- Perform agile and scrum practices correctly.

18- Design and organize the documents needed.

19- Manage their projects development process.

20- Differentiate between the roles of scrum.

21- Locate the participants of each scrum activity.

22- And will be able to assess their work and test the code.

3.3.2 Execution

The research includes the Computer Systems Engineering major students; it is

almost cover quite large population which we can get reliable results from. As a

total we have eight teams working on eight projects running in parallel, four of them

are scrum teams which are of four to six members, as most papers recommended

the agile teams should be small.

31

 The execution is through one semester fifteen-week course, which

typically has two 75-min classes per week, required for 3rd year students, their age

is relatively a positive factor, such it is easier to achieve best results since the social

side of ASD fit with this age as mentioned in [1]. Another clear important cause of

choosing this stage is that they have already passed the prerequisite courses

including Java, Data Structures, Computer Networks, and Databases, so there is no

need to lose some classes to teach these topics to the student to be able to achieve

the product implementation depending on that skills they already had.

Students have distributed in groups from the early lectures, each of those groups

have to find a real customer for a software in whatever domain; to ensure that they

are taking a fully real requirement, also their motivation is enhanced by working

on professional and real-world development modality.

 Inserting some form of competition between the teams can be auxiliary to

maintain the pace up if this have not been placed excessive emphasis on it [1]. So

we intended to encourage each group to have a name represents their team as a

company, each company should have a logo and may have a Facebook page.

The applications vary between Desktop and Web Applications. At the end of

the course they should have the first version of their project ready and tested.

Through the course all the concepts of SWE were covered, and many SW

development strategies mentioned. And some of the groups will construct their

product following the waterfall model. Others will be guided to go through the

Agile strategy, where the instructor follows up the whole processes and activities

through the class and off hours.

In [2] authors conclude that proper tutoring and coaching of teams with respect

to agile methods is a key factor for a project’s success; In [13] a finding that denotes

that students are often lacking critical skills and knowledge at first. So in our case

tutoring have been achieved through classes -particularly the first classes by the

teacher-, coaching will be done through the workshops by the external Scrum

Coach.

32

3.3.2.1 Roles Assignment

The main scrum roles described in [4] will be assigned to team members, with

their self-explanatory names, which is highly helpful in development life as

discussed in [1]. These roles are: The Product Owner having the user stories and

leads teams to transpire the requirement specifications, he is the person who will

contact with the customer. The Scrum Master who is leading the team into enforcing

the Scrum practices (Daily Meeting, Retrospective Meeting, Planning Session,

etc.), helps make decisions or obtain needed resources, and guarantee Scrum

process is followed as it should. The Scrum Team is responsible for developing and

testing the requirements [3].

In our experiment, Scrum roles have been assigned as follows:

- Scrum Master initially assigned to the teacher until the students are ready after

some sprints to take the responsibility, then it will be given to the student with

the best familiarity of technology and tools utilized in a certain iteration [1], or

he could be voted within the students as authors done and recommended in [6]

to let the teams more self-organized.

- Scrum Coach was external to the college; he is a senior from a software

company in Palestine (named: Dimensions).

- Product owner assigned to students under supervision of the teacher.

- Other students will take on the developer role,

- And some of them (one or two) be testers.

Teacher mission is tutoring and he must be existing pending teams’ meetings,

so that he might hint best practices on both high and low level of software design,

to help students in the use of notations, and more. However, teacher existence must

be prudent since members are responsible of the project at end but they are just

assistants and observers [14]. Again teacher’s role should be a full expressing of the

“guide on the side, not a sage on the stage” principle [1].

Scrum coach was responsible for follow up with teams progress, and a

consultant for any scrum issues, he was the trainer on source code management

tools, also he evaluate the final projects if adhered code standards and participate in

testing applications.

33

3.3.2.2 Self-organizing teams

Within the team we did not impose the structure, members themselves are

allowed to self-organize, much like a real Agile team would be expected to do [5].

Self-organizing teams are at the core of “the Agile way”. It supposes the students’

self-control and self-management. It violates with traditional class management so

it may be difficult to conduct at first, but a better interaction and partnership will be

a reward [1].

3.3.2.3 Data Collection

There will be a formative and summative evaluation to assess the students

understanding and skills which are built during practicing Agile over a

comprehensive understanding of peculiarities of that methodology.

According to our hypotheses and measures needed, we have collected data in

different ways. Data about learning outcomes to test the hypothesis mainly gathered

by a quiz which is a summative evaluation method, consists of different question in

SWE, Agile and Scrum. It was executed on the University Learning Management

System (Moodle). During the semester we monitor how students are practicing

Agile, by observations and evaluations, writing down points for each member and

team according to the tables in Appendix [B, C and D] mainly to follow up with

teams work and make sure they adhere each principle well. Also discussions were

needed in many stages with students about the work and how to improve it. So the

researcher has the possibility to communicate better with the participants through

the process.

A questionnaire at the end of the semester done to investigate students

satisfaction through the experiment, inner questions to be rate on a 5-points Likert

scale are clear in Appendix [H]. Lastly we test the final products to find the number

of faults, and the number of features completed of the whole number of features

required.

3.3.2.4 Experimental Environment

Surely the experiment should not change natural environment too much thus

affect its objects more than needful. However there are conditions where some

34

interaction of the experimenter is convenient to have better execution or estimations

in this research. An example of this potential interaction is the intervention by

adding some changes to the requirements during the teams are working on the

applications development, in order to study some related affairs in dealing with

upcoming changes.

3.3.3 Data Validation

Finally, the data had been validated before it was analyzed on SPSS, if it is

reasonable, and has been collected in a correct way, and that the subjects have

applied the methodology with its provided practices and principles through the team

monitoring tools discussed previously (Trello, Bitbucket and Catme). Or some data

may be taken away. An example of a monitored practice is the daily scrum, by daily

writing down the attendance and absence of students with the help of the lab

supervisor (whom we already had his agreement to help in such cases). Other

principles and values discussed in Appendix [B, C and D], mainly designed to

follow up with teams work and make sure they adhere each principle well.

35

Chapter 4 Results and Discussion

We have conducted our experiment on the SWE course students in the second

semester of year 2018/2019. It was executed on eight teams of four to five members

each. Four of them applied Scrum, and the others Waterfall. Three pairs of teams

were developing desktop apps and one pair was developing a web app, and all of

those teams had no prior experience. The total number of the students were thirty

eight students, with eighteen in Agile teams.

Below in Table 4-1 is a summary of teams and projects.

type\method Agile Waterfall Project Context

Desktop First team

"Hash the Dash"

Fifth Team Dental Clinic Systems

Second team

“Alpha Team”

Sixth Team Medical Laboratory Systems

Third Team

“Rainbow Team”

Seventh Team Cars Insurance Systems

Web Fourth Team

"CCCare Team"

Eighth Team Child Care Center Systems

Table 4-1. Summary of teams and projects

It is important to remember that the projects they were developing were of the same

context and the same level of complexity, but different products and details. We have

used “Trello” for Scrum teams as a project management tool and the “BitBucket” as a

source management tool. Screen shots of “Trello” teams boards found at Appendix F.

And screen shots of “BitBucket” of first team found at Appendix G.

4.1 Evaluation of Learning Outcomes

For the factor: Pedagogical model in teaching, the hypotheses were formulated

as follows:

Null hypothesis, H0: Students from the new approach of teaching have the same

understanding of software engineering and agile as the students from the traditional

education. H0 : µR Old = µR Agile Practicing

Alternative hypothesis, H1: Students from the new approach of teaching have

better understanding of software engineering agile as the students from the

traditional education. H1 : µR Old < µR Agile Practicing

Where, R: Rank (Level of students in understanding Agile)

36

The data needed to test this hypothesis was mainly gathered by a pre and post quiz

consists of different question in SWE, Agile and Scrum. They were distributed into two

parts with a total of 20 multiple-choices questions, first part is the general part of 10

questions, and the second is the scrum part. There marks were written down on an

excel worksheet, and the difference between the pre and post results were taken to find

the improvements of the students, which were about 44% for the Agile students against

what about 28% for the traditional ones.

 These improvements were analyzed with SPSS software. By Shapiro–Wilk test of

normality, shown in table 4-2, we find that the p value equal to 0.152 which is greater

than α=0.05, then the null hypothesis that the data came from a normally distributed

population can’t be rejected, and the data is asymptotically normal. So we were able to

use the T-Test which is a parametric test.

Tests of Normality

Kolmogorov-Smirnova Shapiro-Wilk

Statistic Df Sig. Statistic df Sig.

improvement .151 38 .028 .957 38 .152

a. Lilliefors Significance Correction

Table 4-2. Shapiro–Wilk test

 According to Levene’s Test for Equality of Variances, of T-Test results shown in table

4-4, we find that there is a homogeneity of variance between the two samples since sig.

= 0.130. Then we read our values from the first row.

Since p-value = 0.001 which is less than α=0.05, we reject the null hypothesis (states:

Students who applied the new model have the same understanding of it as the students

who applied the traditional model), which means at level of significant α=0.05 the data

give us a sufficient evidence to conclude that there is a significant difference between

the means of the experimental and control groups, which are respectively 8.94 and 5.50,

as shown in table 4-3.

Group Statistics

method N Mean Std. Deviation

Std. Error

Mean

improvement Agile 18 8.94 2.461 .580

Waterfall 20 5.50 3.502 .783

Table 4-3. Group Statistics, T-Test

37

Independent Samples Test

Levene's

Test for

Equality of

Variances t-test for Equality of Means

F Sig. T df

Sig.

(2-

tailed)

Mean

Difference

Std. Error

Difference

95%

Confidence

Interval of the

Difference

Lower Upper

improvement Equal

variances

assumed

2.404 .130 3.471 36 .001 3.444 .992 1.432 5.457

Equal

variances

not

assumed

 3.535 34.097 .001 3.444 .974 1.464 5.425

Table 4-4. Independent Samples Test, T-Test

 At the end of semester the doctor of the SWE course have discussed each team in

their projects, after they have presented it. The new model teams have explained their

projects and their work in a scientific way, while they have showed a better

understanding of the SWE concepts in general, as well as Scrum, in their discussions.

In spite of the control groups who were not participants at the new pedagogical model

were focusing (in other words, they cut corners) to finish their products with obvious

negligence of methodology principles. That is strongly support our results in this most

important part of the research.

4.2 Time to Market

The workload required during the course or the real life, makes time a worthy

resource, people have to handle minutely.

For the factor: Software Development Methodology, the first set of hypotheses were

formulated as follows:

Null hypothesis, H0: Agile needs the same time-to-market that waterfall needs.

H0 : µC Waterfall = µC Agile

38

Alternative hypothesis, H1: Agile optimizes the time-to-market comparing to

waterfall. H1 : µC Waterfall < µC Agile

Completeness of the projects used to be an indicator of the time needed, in term

of the number of features completed through the experiment time, divided by the

number of features required from the customers. The results are stated in table 5-5.

Project Context Team No. feat/

req. feat

No. feat/ req.

feat

Team

Dental Clinic Systems A1 26/28 24/28 W1

Medical Laboratory Systems A2 36/37 30/34 W2

Cars Insurance Systems A3 31/36 27/36 W3

Child Care Center Systems A4 29/29 26/29 W4

Table 4-5. Projects Completeness

The feature is formed in a set of user stories, which in its turn broken down into

many tasks. We consider some feature as completed, if its main user stories are

done, done means coded, reviewed by the product owner and integrated to the

system. The data in Figure 4-1, show the results for both methodologies in our

experiment, and it gave us a string indication that Agile optimizes the time-to-

market comparing to waterfall.

Figure 4-1. Projects Completeness Percentages

0%

20%

40%

60%

80%

100%

120%

1234

p
er

ce
n

ta
ge

teams pairs

Projects Completeness

Agile Waterfall

39

Students have tried their best to get the work finished as well as they can, and

within the semester time, so they need an efficient time management, which is

ordinarily easier in agile, anyone can easily find the time rhythm in sprints design,

which help them be more organized.

With Scrum teams, the process of evaluation were easier than Waterfalls,

because their own definition of done is clear through their design Trello lists (ex.:

To Do, Doing, Testing, Done …), and backlogs content, and tasks cards.

Where with waterfall teams, they took a long time in requirement elicitation and

SRS preparation, then they had dived in coding, and put off testing, where their

colleagues in Scrum teams building their low and high fidelity prototypes, involving

their customer, prioritizing their requirements and refine the next sprint planning.

In the execution as mentioned before we have inserting some form of

competition between the agile teams, hence they have such a company and name.

But when we have the results of students quizzes and projects evaluation, our vision

was to not make it completely a competition, it is not the major objective from the

experiment to get the best project done, but to enforce and work out ASD principles.

Also if the teacher finds and honors the best team, we will motivate this team but

on the other hand make other teams depressed.

The agile teams were almost self-organized as mentioned before, but about roles

rotating, we prefer to not repeatedly rotate the team roles as some papers vision was,

because it will lose their time and dissipate the students’ efforts, and concentration,

than making the development process dynamic or deepening the experience for

everybody having each role himself. Instead, to save time- we have rotated the role

of Scrum Master a few times only. Another reason is there will be a natural level

differences between students in each group, may be one of them is not well with

development, so he might choose the tester position represented the quality

assurance part of the project, this does not prevent him from helping in estimation

or take a design task, but not necessarily be a developer, an explanation of this

decision that in the software market you will do one role in this system, not a role

each morning. Another reason is what [14] have glanced at -if a novice discovers

himself engaged in a working team together with witty students, he might respond

by retiring out of the swarm, resigning work to others in the group, and as a result

40

he will not be involved in any real or effective practical task. This way of

distributing student within a team, taking into consideration the individuals’

abilities and tendencies, and lets all members be conscious of all Agile practices

and –even by observation- of all group activities.

4.3 Product Quality

For the factor: Software Development Methodology, the second set of

hypotheses were formulated as follows:

Null hypothesis, H0: Agile methodology produces the same number of bugs as

waterfall methodology. H0: µF Waterfall = µF Agile

Alternative hypothesis, H1: Agile methodology produces less number of bugs

than waterfall methodology. H1: µF Waterfall > µF Agile

The product quality is indicated by the number of bugs divided by the number

of lines of code – physical lines of code. The bugs included the interface and

usability problems, because we gave a good attention to that non-functional

requirement through the course and development.

Team Bugs/

KLOC

Bugs/KLOC Bugs/

KLOC

Team

A1 95/4.2 22.6 24.6 105/4.3
W1

A2
120/5.7 21 18.5 92/5

W2

A3
84/7.7 11 34.8 223/6.4

W3

A4
70/4.7 14.9 27.3 120/4.4

W4

Table 4-6. Products Quality

Figure 4-2, shows how many bugs were found during testing. It is obvious that

the rates in general is lower for agile teams, so we can have a strong indication that

Agile methodology produces less number of bugs than waterfall methodology.

41

Figure 4-2. Bugs/KLOC rates

In table 4-6 if we compare teams in each pair together, we find less bugs per

KLOC at the left part of the table, except the results for pair 2, perhaps we can

attribute this to the team's less code, and features developed, compared to the

corresponding agile team, and after we had discussed that with the team, they said

that they were sometimes meet the customer if they feel a necessity and that may

help them achieve this score.

Experimental groups did not see testing as last activity of the development.

Frequent testing and frequent releases are very helpful in quality improvement.

If we compare bugs per KLOC within the experimental groups themselves, we

find the best result is for the third team even they have the biggest code size, also it

is one of the highest number of features between the projects, as Table 5-5 shows.

Furthermore, their corresponding team have the highest number of faults. All of this

is justified due to the type of the application, it is primarily an accounting system,

where examiner or user can find a lot of errors if the product had not been tested

enough.

4.4 Student Satisfaction

In the last week of the experiment, the eighteen student in the experimental

groups filled in a satisfaction questionnaire, online using a free tool for

questionnaire creation and analysis. The questionnaire consists of fifteen

0

5

10

15

20

25

30

35

40

1234

ra
te

teams pairs

Bugs/KLOC

Agile Waterfall

42

statements, students asked to rate them between “Very dissatisfied: 1” and “Very

satisfied: 5” on Likert scale to gather their feedback. Overall feedback was positive.

The second part asks if they will recommend their colleagues to take this course.

All of the eighteen students have answered by “Yes”.

Figure 4-1, shows the Top/Bottom five results of the fifteen statements, with its

percentage of satisfaction.

Figure 4-3. Top/Bottom five results of the fifteen statements, with its percentage of

satisfaction

These results points a sense that the design and content of the course are mature

enough, hence students are satisfied in general, with overall satisfaction of 87.6%.

However some negative feedback arrived. These results were discussed with the

students after they had all submitted the questionnaire and we had had the results

analyzed. The negative feedback was especially on time offered to the experiment

compared with the amount of work required throughout the project and with many

new concepts introduced, learning about the source code management.

We -as authors and teachers- satisfied of the experiment significant results, and

the good influence on the students, and satisfied of the high quality products

43

delivered by the teams too. It is also worth mentioning that one of our projects

become a graduation project for students.

The results in details are in this link [38]. Include a full graph of the figure 4-3.

Followed by a table shows the statements of the first part, and its scores of

satisfaction, and ends with an analysis for satisfaction on each statement with the

number of students answered each choice. Some of them shown in Appendix H.

4.5 Other Results

We had conducted a trial similar partial execution of this experiment a year ago;

to learn from that experience in order to help us in conducting the current main

experiment.

It was executed on five teams of four to five members each. Three of them

applied Scrum, others Waterfall. We had 4 teams working corresponding each other

as the research balanced design states, so we had 2 web apps and 2 desktop apps in

total, all of those teams had no prior experience.

But the fifth team had developed a mobile app, and they have used “Jira” and

“GitHub” instead of “Trello” and “BitBucket” respectively. Also, they are differ

from others, that they have passed the SWE course a year before, so they had some

experience. Hence, before we engaged the fifth group in the experiment we had dine

blocking on prior experience, by a pre-test, attempting to guarantee that it does not

influence the research results. Table 4-7, shows a summary of teams and projects.

type\method Agile Waterfall Project Context

Desktop First team

"Breaking Point"

Third team Storage Management System

“Cappuccino System”

Web Second team

"Sky Geeks"

Fourth team

Tourism and Travel Systems

Mobile

(Android)

Fifth team

“Jira Team”

Table 4-7. Summary of trial experiment

The results were mostly in line with the current results, in addition to some

dedicated observations related to its different teams, students who applied the agile

44

process without prior experience in the waterfall process (first and second teams)

perform the same as those with prior experience in the waterfall process (fifth team).

Students were able to go through the agility from the team's first project

conforming full software development lifecycle. Scrum such as chess; one can pick

up the principles in minutes, but it needs more time to be great at it. Theoretically,

the team should be more efficient and produce more work with each new cycle [37].

And we found this somehow true because one becomes more familiar with tools

and practices.

In addition, we found that the probability of finding students able to develop a

mobile app –in order to maintain apps diversity- is very low. The experiment results

are going well with whatever were the apps types.

The following are some noticeable results related to unlike tools used. Two

different tools were used for source code management which were “BitBucket” -as

we planned- and “GitHub”, they are almost the same, both are Git code

management, and can be integrated in Trello. In both as we wrote before, students

need intensive training on the source code management tool because it is a new

concept and tool for them, which they did not use before. But any way they are both

better than SVN.

Another difference, that we used “Trello” except the fifth team have used “Jira”.

Trello have simpler interface, and students was satisfied with Trello more than Jira.

Furthermore, free Jira gives a limited time (a month) and number of collaborators

(three members), or you have to pay to get more, so we have paid for the fifth team.

As a conclusion we again recommend Trello as a project management tool.

Furthermore, one of those groups has used agile methodology in the

development of their new web application project as a graduation project.

4.6 Discussion of Results

For all the above results, we found a clear agreement with the literature results and

outcomes, and on the other hand, we take their recommendation -extracted from the

problems they were faced- to upgrade our experiment design which improved our

results.

45

We all agree that teaching agile is a necessary, according to its widespread and

success in software development, and the universities is the best environment to do. But

we may agree or not agree in design details and results.

We share that it is very necessary to balance the time granted for software functionality

with the time required to work on agile as a way to develop the software projects, and

this was achieved by assigning students to projects that are not complicated. Also, the

simplicity of the projects maintained their appeal to students to complete the

experiment. Furthermore, we found that there is no problem in helping students in some

tasks like the estimation part of the project to keep up with progress.

Permanent follow-up with students, attending their meetings and guiding them had a

clear effect, and the frequently workshops and discussions as well grant a great help.

In exchange for the lecturer role of giving assessments only at the end. But we should

keep in mind that more monitoring gets students unsatisfied.

Likewise, the usage of helping tools where necessary, give the new model students a

push in understanding each aspect of the work and its needs. And naming the teams

made them motivated to learn more correctly, so that they could properly implement

their project, and then compete with the rest of the teams. Teams in its turn should be

small, to benefit each member, and we recommend our strategy in roles assignment,

which comes in light of all others advices and our own opinion, it was really fit the aim

with no side effects.

Documents are important in any project, to go through logical and correct steps based

on a clear objectives and charts, but as agile manifesto recommend, we also from our

experiment recommend to focus on working software more than comprehensive

documentation, because any expansion will become useless, delay the project and

overburden the student.

The course design and material should be fully prepared before start the experiment, as

well as the infrastructure needed by the students, and other instrumentations.

 But from our experience we do not agree with authors conducted the experiment in

time frame shorter than two to three months, which does not achieve the desired results.

About the course, it should consist of just one assignment consists of all software

engineering aspects, where the traditional model and some of literature experiments of

46

adopting agile were based on a set of discrete small activities. And when come to tools,

we see that researcher should not neglect any necessary tools, even its hard to learn

from the students, in that case teacher have to find a good alternative or train the student.

 Lastly, we applied simple games and entrainment through the course, but they were

not enough to write down results and conclusions after them, but we recommend to

employ more games if time permits, all previous research supports this trend.

47

Chapter 5 Conclusion and Future Work

5.1 Conclusion

Agile is the most used methodology in software companies, so it is clear that

Agile more important than just has been defined with some of its characteristics in

the software engineering course in the universities, where it is more effective and

less risky to get this knowledge and behaviours in academic environment, paying

attention to the methodology of teaching itself, teaching Agile should be Agile

teaching, to improve the output quality. Teacher may be act a negative role in the

learning process if he is not skilled as required, so in our study we invited an

external coach to monitor the process. That helped us assure that all aspects are

adhered, and give more reliability and credibility to the results we gained through

the experiment in answering our research questions. Evaluations of learning

outcomes and students satisfaction demonstrate that the course concepts were well

received, and participant students learned much about agile and software

engineering, while having fun. Also, the experiment was helpful to enrich the skills

of management, collaboration and communication between students. An important

contributions of this paper to light a methodology for teaching the SWE as a project

based course of agile development, and to present different techniques to enhance

this methodology.

5.2 Future Work

To accommodate more students, where all groups might be given the same

project, then it will be easier to manage and follow them up. Or having a large

project as well, then distribute its aspects between groups, this case will be closer

to the reality. Like in process happening in outsourcing development with

distributed teams and remote customers.

Next times, there will be more focus on games as a factor through teaching

process, and additional treatments of non-functional requirements through product

48

development in addition to the usability requirement. Hence, be able to analyse its

appliance results.

In the coming years we intend to develop a simple course as an introduction to

Agile, dedicated to second year students, so in the third year it will be easier to

exploit the semester time in a better manner. Also, it would be possible to give the

students a complicated project from external client at their fourth year in university.

5.3 Recommendation

We recommend that other courses like: Object Oriented Programing, Data

Structure, Database and all other courses including a project, to adopt Agile

methodology in their group projects. Not to just isolate SWE teaching in a separate

course.

As a reaction to the increasing needs for SWE professionals who are

understanding and introducing Agile in their work, and on consequent of this work

[5], we suggest to have an experiment on SWE master students in the Construction

Course, or introducing it as elective course, where the students are usually full-time

employees in public or private IT sector.

Through data gathering we recommend to have a questionnaire measures

customers satisfaction, which gives an indication of the validity of students work.

5.4 Threats to Validity

For the external validity, our sample is based on the students who happen to be

most accessible to the researchers. The experiment happened in one university with

thirty eight participants who eligible to our aims. There is no way to tell if the

sample is representative of all Palestinian universities, we are not able to include

many universities in the experiment and then have a random sample, so it might not

produce generalizable results, due to under-representation of subgroups in the

sample.

49

Another limitation, regarding the conclusion validity, we were limited to a

certain number of subjects due to the population available, our population is the

SWE course’s students at a specific semester in our university. If we would intend

to increase the sample, then we had two choices, the first is to repeat the experiment

on other years, and this is hard to achieve according to duplicated time needed, but

we had done a trial experiment before, it was somehow useful guiding us for a better

execution of our official experiment.

Another choice was to include the Applied Computing students in the Applied

Science College, who have the SWE course in their study plan. But we preferred

not to do, to guarantee the unified level and background of groups, then the

homogeneity among them. And make less effort on the authors in training the

participants and arranging times according to students other lectures in a different

college. But it still a possible choice for next iterations of the experiment.

We have another conclusion validity concerned with results analysis and two

hypotheses tests, those hypotheses for the second factor are time-to-market and

bugs rate, their resulted data are so small to perform a statistical test, so we can’t

eject the null hypotheses, we can just have an indications from the data.

Also, it is a human-oriented experiment, as regards internal validity, this implies

a limitation to the control of the study, since students have distinct capabilities,

skills and interests, which in itself may be an independent variable. But in our study

were the students grouped in teams, they will be internally heterogeneous, but

homogeneous among groups, which reduces this limitation effect.

For the construct validity, we should track our students after graduation; since

to some extent it needs much effort to report they learned such valuable thing,

without see them at work.

In the experiment design we have two factors to investigate, which may have

affected each other, the first was the pedagogical model, where in the new model

we adopting agile and designing the whole course, lectures, projects and its follow-

up in a new manner dedicated to teaching agile professionally, which includes the

50

teacher as a guide for the students, and we have a volunteer from industry to help

students in the new approach of learning. This treatment was on teams who assigned

projects to develop using Agile. While the other treatment, which is the old model,

was applied on the rest of the students who are the control group and who are

assigned the waterfall projects, and that is okay for the first factor.

But when we move to the second factor of the software development

methodology to compare between two methods the first is the agile and the other is

water fall, by the object which is the final product developed, in means of time

needed and bugs rate, there is a difference between the attention given to the two

teams according to which model of teaching they belongs, this difference act as a

construct validity, that we can’t avoid unless we separate the two factor into two

experiments with different subjects.

Furthermore, we thought it might be better if we test null hypothesis of time-to-

market, by straight forward finding the velocity of each team, velocity is the result

of the division of Agile story points delivered by the number of sprints. But it has a

poor fit for waterfall strategy of development. So, we found the number of the

completed features from the whole required features in the limited time of the

experiment. Which considered suitable for both methods.

51

References

1. Devedžić, V., & Milenković, S. R. (2011). Teaching Agile Software

Development: A Case Study. IEEE Transactions on Education, 54(2), 273–278.

2. Schroeder, A., Klarl, A., Mayer, P., & Kroiss, C. (2012). Teaching agile

software development through lab courses. IEEE Global Engineering Education

Conference, EDUCON, 1–10.

 3. Rodriguez, G., Soria, Á., & Campo, M. (2015). Virtual Scrum: A teaching

aid to introduce undergraduate software engineering students to Scrum. Computer

Applications in Engineering Education, 23(1), 147–156.

 4. Cervone, H. F. (2011). Understanding agile project management methods

using Scrum. OCLC Systems & Services: International Digital Library

Perspectives, 27(1), 18–22.

5. Johnson, A. M. A. (2017). Teaching Agile Methods to Software

Engineering Professionals: 10~Years, 1000 Release Plans.

 6. Kropp, M., & Meier, A. (2013). Teaching agile software development at

university level: Values, management, and craftsmanship. Software Engineering

Education Conference, Proceedings, (November 2014), 179–188.

7. Hazzan, O., & Dubinsky, Y. (2007). Why Software Engineering Programs

Should Teach Agile Software Development. Software Engineering Notes, 32(2), 1–

3.

8. Campbell, J., Kurkovsky, S., Liew, C. W., & Tafliovich, A. (2016).

Scrum and Agile Methods in Software Engineering Courses. Proceedings of the

47th ACM Technical Symposium on Computing Science Education - SIGCSE ’16,

319–320.

9. El-Khalili, N. H. (2013). Teaching Agile Software Engineering Using

Problem-Based Learning. International Journal of Information and Communication

Technology Education, 9(3), 1–12.

52

10. Inayat, I., Salim, S. S., Marczak, S., Daneva, M., & Shamshirband, S.

(2015). A systematic literature review on agile requirements engineering practices

and challenges. Computers in Human Behavior, 51, 915–929.

11. Beck K. (2001). Manifesto for agile software development. [Online].

Available: http://agilemanifesto.org/

 12. Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile

software development methods: Review and analysis. Espoo, Finland: Technical

Research Centre of Finland, VTT Publications, 112.

13. Scharff C. (2011). Guiding global software development projects using

scrum and agile with quality assurance. Software Engineering Education and

Training Conference, IEEE.

14. Del Bianco V. & Sassaroli G. (2003). Agile Teaching of an Agile Software

Process. Extreme Programming and Agile Processes in Software Engineering 4th

International Conference, XP. Genova, Italy, 417-420.

15. Reichlmayr, T. (2003). The agile approach in an undergraduate software

engineering course project. Proceedings - Frontiers in Education Conference, FIE,

3, S2C13-S2C18.

16. IEEE. (2009). New Standards Committee (NesCom) recommendations,

IEEE-SA Standards Board. [Online]. Available: http://standards.ieee.org/

17. Sato D. T., Corbucci H., & Bravo M. V. (2008). Coding dojo: An

environment for learning and sharing agile practices, IEEE. 459–464.

18. CodinDojo. [Online]. Available: http://www.codingdojo.com/

19. Lego4Scrum. [Online]. Available: https://www.lego4scrum.com/

20. Tastycupakes. [Online]. Available: tastycupcakes.org

21. Catme. [Online]. Available: www.catme.org

22. Fowler, M. (ThoughtWorks). (2009). Flaccid Scrum, 2. [Online].

Available: https://martinfowler.com/bliki/FlaccidScrum.html

23. Schwaber, K. (2010). Waterfall, Lean/Kanban, and Scrum, 5. [Online].

Available: https://kenschwaber.wordpress.com/2010/06/10/waterfall-leankanban-

and-scrum-2/

53

24. Mushtaq, Z., & Qureshi, M. R. J. (2012). Novel Hybrid Model: Integrating

Scrum and XP. International Journal of Information Technology and Computer

Science, 4(6), 39–44.

25. Castronova, E. (2005). Synthetic worlds: The business and culture of

online games. University of Chicago Press, United States.

26. Beck, K. (1999). Extreme programming explained. Reading, Mass.,

Addison-Wesley.

27. Schwaber, K. (1995). Scrum Development Process. OOPSLA'95

Workshop on Business Object Design and Implementation, Springer-Verlag.

28. Schwaber, K. and M. Beedle (2002). Agile Software Development with

Scrum. Upper Saddle River, NJ, Prentice-Hall.

29. Cockburn, A. (2002). Agile Software Development. Boston, Addison-

Wesley.

30. Palmer, S. R. and J. M. Felsing (2002). A Practical Guide to Feature-

Driven Development.

31. Kruchten, P. (1996). A Rational Development Process. Crosstalk 9(7):

11-16.

32. Stapleton, J. (1997). Dynamic systems development method: The

method in practice. Addison-Wesley.

33. Highsmith, J. A. (2000). Adaptive Software Development: A

Collaborative Approach to Managing Complex Systems. New York, NY, Dorset

House Publishing.

34. O'Reilly, T. (1999). Lessons from Open Source Software Development.

Communications of the ACM Vol. 42(No. 4): 32-37.

35. Ambler, S. (2002a). Agile Modeling: Effective Practices for Extreme

Programming and the Unified Process. New York, John Wiley & Sons, Inc. New

York.

36. Hunt, A., Thomas, D. (2000). The Pragmatic Programmer. Addison-

Wesley.

37. Trello. [Online]. Available: https://blog.trello.com/

38. Satisfaction Questionnaire – questions, results and analysis. Available:

https://www.questionpro.com/t/ZRisXHZG2zpYD

https://blog.trello.com/
https://www.questionpro.com/t/ZRisXHZG2zpYD

54

55

Appendices

A. Course Outline

Week Lecture

1 Introduction to Software Engineering Concepts

Non-functional requirements

2 Usability, Low & high fidelity prototype

UML (RationalRose Tool)

3 Software Development Methodologies Overview

Waterfall Methodology

4 Pre-study Assignment

Agile Manifesto

5 Group organization

Specify group projects

6 Appropriate IDE installation (AndroidStudio for Mobile Applications

Projects, etc)

Case Study

7 Scrum

Refactoring

8 Kanban Game

eXtreme Programming

9 Code Integration & Version Control

Github

10 Estimation

User stories & Planning Poker

11 Quality Assurance and Testing

Follow-up Lecture

12 Learning Stand-up Meeting

Release and sprint Planning

13 Communication

Follow-up Lecture

14 Follow-up Lecture

Follow-up Lecture

15 Follow-up Lecture

Follow-up Lecture

56

B. Agile Values

Agile Values What to investigate How to measure

Individuals and interactions

over processes and tools

Which leads/drives the

other, which

responds?

In the case of individuals:

communication happens

when a need arises.

In the case of process:

communication is

scheduled and requires

specific content.

Working software over

comprehensive

documentation

What are the used

documents?

Necessity of:

 user stories (imp.

to begin the task

of building a new

function) in form

of scrum artifacts:

- the product

backlog,

- the sprint backlog,

 Class-based

documentation

 Estimation excel

sheets.

 Burn down charts.

Wasting time if doing

more extensive

documentation.

Customer collaboration over

contract negotiation

When Customer is

involved and how

much?

If customer was involved

before development

began and after it was

completed>> Not Agile.

But if during the

process>> Agile.

57

It will be measured

through simple reports

from the product manager

to the teacher.

Responding to change over

following a plan

 Mentoring the team’s

transaction on “Trello”

tool to investigate if they

can benefit from the

shortness of the iterations

so they do shifting

priorities from iteration to

iteration and adding new

features into the next

iterations. Which is

appear clearly in the

modified product and

sprint backlogs, and the

student‘s behaviours

through each sprint in the

system log.

C. Agile Principles

Agile Principles How to be evaluated

Our highest priority is to satisfy the

customer through early and continuous

delivery of valuable software.

By a discussion in the middle of

work and at the end of the project,

asking the customers if they were

satisfied of receiving working

software at regular intervals, or they

were having to wait extended

periods of time between releases.

58

Welcome changing requirements, even late

in development. Agile processes harness

change for the customer's competitive

advantage.

By asking the team and the customer

if requesting changes caused

any/excessive delays. Or if have not

been done.

Deliver working software frequently, from

a couple of weeks to a couple of months,

with a preference to the shorter timescale.

Find by the “Trello” tool the

percentage of unfinished features per

sprints.

Business people and developers must

work together daily throughout the project.

Did the customers participate in

decision making?

Prompt teams to show cases.

Build projects around motivated

individuals.

Give them the environment and support

they need, and trust them to get the job

done.

Manage the complexity of projects

choosing/ Entrainments

Then measure satisfaction and

achievements.

The most efficient and effective method

of conveying information to and within a

development team is face-to-face

conversation.

Lectures Dedicated Rooms/labs and

daily scrum

Working software is the primary measure

of progress.

Delivering functional software to the

customer is the ultimate factor that

measures progress.

Agile processes promote sustainable

development.

The sponsors, developers, and users should

be able to maintain a constant pace

indefinitely.

Monitoring teams/members progress

and releases

Continuous attention to technical

excellence and good design enhances

agility.

Supportive learning by suggestion of

MOOCs and some courses from

Coding Dojo

Simplicity--the art of maximizing the

amount of work not done--is essential.

If students doing prioritization And

treat epics effectively.

59

D. Scrum Artifacts

More for Scrum How to deal with

Daily Scrum There is a specific hour daily from

8:00 to 9:00, each team should book a

quarter hour meeting on Doodle a day

before.

And when coming presence.

PS: if there is a problem in booking, it

is returned to Scrum master.

Product backlog Seen on Trello

Sprint backlog Seen on Trello

60

E. Jira Dashboard Screenshots

Fig. E-1. Active Sprint

Fig. E-2. Backlog

61

Fig. E-3. Task Details

F. Trello Boards Screenshots

Fig. F-1. Active Sprint

62

Fig. F-2. Sprint Review

Fig. F-4. Task Details

63

Fig. F-5. Team Members

G. BitBucket Screenshots

Fig. G-1. Project Repository

64

Fig. G-2. Project Source Files

H. Satisfaction Results

Question:

How satisfied are you with…?
Count Score

Very

dissatisfied

Not

satisfied
Neutral Satisfied

Very

satisfied

Overall experience at university 18 4.89

Development of a real product 18 4.72

Teamwork 18 4.89

Project time 18 2.78

Communication platforms 18 4.78

Daily scrum 18 4.56

Change management 18 4.28

Frequent releases 18 4.22

65

Question:

How satisfied are you with…?
Count Score

Very

dissatisfied

Not

satisfied
Neutral Satisfied

Very

satisfied

Contact with customer & Prototyping 18 3.89

Theoretical lectures 18 3.83

Workshops and trainings 18 4.72

External coach 18 4.67

Project management tool: Trello 18 4.78

Version control system: Bitbucket 18 3.94

How agile values and principles were

adopted
18 4.72

 Average 4.38

Fig H. Whole Statements Satisfaction

